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Abstract— Time Frequency distributions (TFD), which indicate the 

energy content of a signal as a function of both time and frequency, 

are powerful tools for time-varying signal analysis. The lack of a 

single distribution that is “best “ for all applications has resulted in 

a proliferation of TFDs, each corresponding to a different, fixed 

mapping from signals to the time-frequency plane. A major 

drawback of all fixed mappings is that, for each mapping, the 

resulting time frequency representation is satisfactory only for a 

limited class of signals. In this paper, we compare the different 

TFDs of Cohen’s class-Wigner-Ville, Choi-Williams, Zhao-Atlas-

Marks and Born-Jordan distributions by applying them to multi-

component signals.  
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I. INTRODUCTION 

Non-stationarity brings new challenges for signal processing 

area. Natural direction to calculate only the spectrum of the 

signal can be insufficient, providing only general information 

with loss of time-varying nature of analysed phenomena. The 

violation of main assumption of spectral analysis, the 

stationarity, can be solved by introducing the joint time-

frequency domain ([1], [2], [3]). 

Time –frequency signal analysis & processing (TFSAP) 

concerns the analysis & processing of signals with time varying 

frequency content. Such signals are best represented by a time 

frequency distribution (TFD), which shows how the energy of 

the signal is distributed over the two-dimensional time-frequency 

space. By processing the signals, we get to understand the 

features produced by concentration of signal energy in two 

dimensions-time and frequency, whereas signals represented by 

using either time or frequency representation doesn’t give us the 

information of the other dimension. We require TFDs for the 

analysis of non-stationary signals (signals having time-varying 

frequency content) like sinusoidal FM, linear FM, musical 

performance, transients etc. These non-stationary signals occur 

in telecommunications, radar, sonar, vibration analysis, speech 

processing and medical diagnosis. By using time-frequency 

representations (TFR), the interpretation of signals is easier. It 

helps in detecting multiple signals, and also their nature. Also 

TFD’s are useful in extracting signal from noise. The frequency 

spectrum of the signal doesn’t provide an accurate method of 

analysing the signal. Through the use of TFDs, the analysis of 

the signal is greatly simplified [4], [5]. 

TFRs have been classified as linear, bilinear (quadratic), 

adaptive and averaged TFRs. Linear TFRs that satisfies the 

linearity superposition principle includes Short-time Fourier 

transform (STFT), Gabor Transform and the Wavelet transform. 

The standard method for studying time-varying signals is the 

STFT method that is based on the assumption that for a short-

time, signal can be considered stationary. The spectrogram 

utilizes a short-time window whose length is chosen so that over 

the length of the window, the signal is stationary. Then, the 

Fourier transform of this windowed signal is calculated to obtain 

the energy distribution along the frequency direction at the time 

corresponding to the centre of the window. The crucial drawback 

of this method is that the length of the window is related to the 

frequency resolution. Increasing the window length leads to 

improving frequency resolution but it means that the non-

stationarity occurring during this interval will be smeared in time 

and frequency. This inherent relationship between time and 

frequency resolution becomes more important when one is 

dealing with signals whose frequency content is changing 

rapidly. A time-frequency characterization that would overcome 

above drawback led to the development of non-parametric, 

bilinear transformations [3].  

A Quadratic TFR (QTFR) is one that satisfies the quadratic 

superposition principle. For QTFRs, the windowing techniques 

are not required because the objective is to form energy 

distributions so that the signal energy can be distributed in the 

TF plane. QTFRs often overcome the TF resolution problem that 

limits the linear TFRs. Some important QTFRs are Wigner-Ville 

Distribution (WVD), Choi-Williams Distribution (CWD), Zhao-

Atlas-Marks Distribution (ZAMD), and Born-Jordan 

Distribution (BJD). All these TFD’s are members of Cohen’s 

bilinear class.  

The paper is organized as follows. In the next section we 

define the class of all quadratic time-frequency distributions 

covariant to time-shifts and frequency shifts; and each 

distribution is described in brief. In Section III we analyse the 

performance of these distributions by applying various simulated 

multi-component signals in MATLAB. The conclusion is given 

in Section IV. 
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II. COHEN’S GENERALIZATION 

Cohen defined a general class of bilinear transformation 

(TFC) introducing kernel function, Φωt(θ,τ). The significance of 

Cohen’s work is to reduce the problem of designing time-

dependent spectrum to the selection of the kernel function. Each 

distribution in Cohen’s class can be interpreted as the two-

dimensional Fourier transform of a weighted version of the 

symmetric ambiguity function (AF) of the signal to be analysed. 

That is, if TFC (t,ω) is a bilinear TFD, then 

TFC ( t,ω)= ∫
− ∞

∞

∫
−∞

∞

A(θ,τ )Φ (θ,τ )e− jθt− jωt dθdτ      (1) 

where 

A(θ,τ )= ∫
− ∞

+ ∞

x∗ (u−
τ

2
) x (u+

τ

2
)e jθu du        (2) 

where t-time, ω-angular frequency, τ-time lag, θ-angular 

frequency lag, and u- additional integral time variable. The 

weighting function Φ(θ,τ) is called the kernel of the distribution 

or parameterization function. The properties of a particular 

bilinear TFD are completely determined by its kernel function. 

Since the AF is a bilinear function of the signal, it exhibits cross 

terms(c-t) which are undesirable, which when allowed to pass 

into the TFD, can reduce auto component resolution, obscure the 

true signal features, and make interpretation of the distribution 

difficult. Therefore the kernel is often selected to weight the AF 

such that the auto terms (a-t), which are centred at the origin of 

the (θ,τ) ambiguity plane, are passed, while the cross terms, 

which are located away from the origin are suppressed[4], [5]. 

For a given class of signals, we say that a TFD offers good 

performance if, for each signal in the class, it achieves a high 

degree of both cross-component suppression and auto 

component concentration, and provides an accurate 

representation of the time-frequency content of the signal. An 

important theoretical and practical goal of time-frequency 

analysis is to define a TFD that attains good performance for a 

large class of different signals. The most prominent influence of 

cross-terms is then observed in case of Wigner-Ville distribution, 

where the kernel Φ(θ,τ)=1. Applying Gaussian kernel (CWD), 

“sinc” kernel (BJD) or cone-shaped kernel (ZAMD) brings 

smoothing effect on the equation level.  

Next we briefly describe each time-frequency distribution. 

Detailed descriptions, properties and derivations of the TFDs can 

be found from [1]-[6]. 

A. Wigner-Ville Distribution 

Wigner –Ville Distribution (WVD) is the most important 

and simplest of Cohen’s class of Bilinear TFRs. It may be 

defined as  

WVD( t,ω)= ∫
−∞

+∞

x ( t+
τ

2
) x∗ ( t−

τ

2
)e− jωτ dτ                     

(3) 

where x (t) is a possibly complex-valued analytical signal. 

Due to the quadratic nature of the WVD, its discrete version may 

be affected by spectral aliasing, in particular if the signal x is real 

valued and sample at the Nyquist rate. A solution to this problem 

consists in using the analytic signal by taking the Hilbert 

transform of the signal. As its bandwidth is half the one of the 

real signal, the aliasing will not take place in the useful spectral 

domain of this signal. Also since the spectral domain is divided 

by two, the number of components in the time-frequency plane is 

also divided by two. Consequently, the number of interference 

terms decreases significantly. WVD has a number of 

mathematical properties considered desirable in a TFR. In 

particular, the WVD is always real-valued, it preserves time, and 

frequency shifts and satisfies the marginal properties. That is if 

the WVD is summed over frequency at a fixed time, a value 

equal to the energy at that point is obtained [4], [5], [6], [7]. 

Despite the desirable properties of the Wigner distribution, 

its use in practical applications has been limited by one un-

desirable property; namely, the presence of cross terms. The 

Wigner-Ville distribution of the sum of two signals x(t) +y(t) 

WVDx+y(t,ω)=WVDx(t,ω)+ 2Re[WVDx,y(t,ω)]  

                               +WVD( t,ω)             
(4) 

has a “cross-term” 2Re[WVDx,y] in addition to the two auto-

components, where the cross-Wigner distribution is defined as  

WVDx,y ( t,ω)= ∫
− ∞

+ ∞

x( t+
τ

2
) y∗ ( t−

τ

2
)e− jωτ dτ (5) 

Cross-terms lie between two auto-terms and are oscillatory, 

with their frequencies increasing with increasing distance in 

time-frequency between the two components. The cross-terms 

can have a peak value as high as twice that of the auto-terms. 

These interference terms are troublesome since they may overlap 

with auto-terms and thus make it difficult to visually interpret the 

WVD image. One way to attenuate these interferences is to 

smooth the distribution in time and in frequency, according to 

their structure. But the consequence of this is a decrease of the 

time and frequency resolutions, and more generally a loss of 

theoretical properties. Hence these terms must be present or the 

good properties of the WVD (marginal properties, instantaneous 

frequency and group delay, localization, unitarity etc) cannot be 

satisfied. Actually there is a trade-off between the quantity of 

interferences and the number of good properties [6]. 

B. Choi-Williams Distribution(Exponential) 

It was first proposed by Hyung-III Choi and William J. 

Williams in 1989. This distribution function adopts a kernel to 

suppress the cross-term interference of WVD. The CWD is a 

shift-invariant transform. It is a smoothed version of the Wigner-

Ville distribution through a kernel function defined by 

Φ (θ,τ )=
∣πσ

∣τ∣
e− π

2
σt

2
/ τ

2

              (6) 

The Choi-Williams distribution is then defined as 

CWD( t,ω)= ∫
−∞

∞

∫
−∞

∞
√πσ

∣τ∣
e

− π
2

σ( t− u )
2

τ2
z (u+

τ

2
) z∗ (u−

τ

2
)

 

e
− jωτ

dudτ                                       (7)  

where z (t) is a complex-valued analytical signal. The 

smoothing of the distribution is controlled by the constant σ 

which is real and positive. It is a scaling factor to control its 

attenuation rate and σ < 10 is often preferred. As σ→∞, the 

CWD will simply converge to the WVD, as the kernel goes to 1. 

Inversely, the smaller σ, the better is the reduction of the 

interferences [8], [9]. The “cross”-shape of the kernel (Fig. 1) of 

CWD implies that the efficiency of this distribution strongly 

depends on the nature of the analysed signal. 

The CWD has a coarser time-frequency resolution than the 

WVD because the CWD also blurs the auto-terms when the 

CWD reduces the cross-terms. Because the exponential kernel 

function doesn’t reduce the values of the ambiguity function on 

the horizontal axis or the vertical axis, the CWD preserves the 

cross-terms on the horizontal axis and the vertical axis. In other 

words, the CWD doesn’t suppress the cross-terms that two auto-

terms with the same time centre or frequency centre generate 

whereas it suppresses the cross-term interference between two 

signal components that have a large difference in central time or 

central frequency. Therefore for large values of the signal length, 

this requires a long computation time and more memory. 
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Fig. 1  Kernel of Choi-Williams Distribution 

C. Zhao-Atlas-Marks Distribution (Windowed Sinc) 

It was first proposed by Yunxin Zhao, Lee. E. Atlas and 

Robert J. Marks in 1990. Its kernel function is defined by 

Φ (θ,τ )=w( τ )rect
t

2τ /a                         (8) 

Where ‘a’ is a constant which is real and positive and w (τ) 

is a window function. Since its kernel function in θ, τ domain 

looks like two cones; it is named as cone-shaped kernel 

distribution (Fig. 2). ZAMD is defined as 

 

ZAMD( t,ω)= ∫
−∞

∞

∫
t−∣

τ

a
∣

t+∣ τ
a
∣

w (τ ) z (u+
τ

2
) z∗ (u−

τ

2
)e− jωτ dudτ

 

(9) 

Here ‘a’ is often taken as 2. The advantage of this special 

kernel function is that it can completely remove the cross-term 

between two components that have same centre frequency, but 

on other hand, it cannot reduce cross-terms that two auto-terms 

with the same time centre generate [10]. The ZAMD produces a 

good resolution in time and frequency domains in the case of 

constant frequency. The ZAMD method reduces the interference 

resulting from the cross-terms present in multi-component 

signals. It is useful in resolving close spectral peaks and 

capturing non-stationary and multi-component signals. For 

signals with changing frequency, the ZAM distribution displays 

ghosting around the signal. The ghosting increases when the rate 

of frequency change increases. So ZAM is not an ideal 

transform. 

D. Born-Jordan Distribution(Sinc) 

The Born-Jordan distribution is a shift-invariant, kernel 

smoothed Wigner-Ville distribution. The kernel function is 

defined by  

Φ (θ,τ )=
1

∣2ατ∣
rect

t

2ατ            (10) 

which defines the Born-Jordan distribution as: 

BJD( t,ω)= ∫
−∞

∞

∫
t−∣ατ∣

t+∣ατ ∣
1

2ατ
z (u+

τ

2
) z∗ (u−

τ

2
)e

− jωτ
dudτ

 

(11) 

It has been observed that the BJ distribution is a special case 

of ZAM with w(τ)=a/2׀τ׀ and a=1/α. The BJD performs well for 

signals with constant frequency [9], [11], [12]. Fig. 3 shows the 

kernel of BJ Distribution in the ambiguity plane. 

Since the entire distributions mentioned above try to reduce 

the interferences, these are called Reduced Interference 

distributions.  

 

 
Fig. 3   Kernel of Born-Jordan Distribution in ambiguity plane

Fig.  2 Kernel of Zhao-Atlas-Marks Distribution 

  

III. SIMULATION RESULTS  

In this section  the different distributions for a set of four 

multi-component signals is analysed by using their MATLAB 

simulations. 

A.  Multiple Linear FM 

First  two linear frequency modulated signals (lfm), also 

called chirp signals is applied. Let one be an up lfm and the other 

a down lfm which overlap each other. Noise is added to the 

signals.   

Fig. 4 shows the different Time-Frequency Distributions of 

two lfm’s. By applying a noise level of 0.5 it can be seen that 

WVD is clear but has lots of cross-terms. The resolution of CWD 

is better than ZAMD and BJD. When applying a noise level of 

1.2 the WVD is not at all visible (Fig. 5). It is hard to distinguish 

the signal when the background noise is increased. Comparing 

with BJD, CWD provides better resolution whereas ZAMD is 

worse. 

B.  Multiple Up-Lfm 

Here we apply two up linear FM signals whose starting 

frequencies and ending frequencies are different. For a noise 

level of 0.5, CWD provides nearly perfectly resolved signals in 

time and frequency (see in Fig. 6). A strong smeared cross-term 

is visible with the CWD. BJD is the second best transform 

whereas the cross-terms are greatly reduced for ZAMD. But it 

displays a grainy target with poor frequency resolution. As noise 

level increases, the signal becomes totally invisible using WVD, 

while it is moderately blurred with ZAMD. BJD provides better 

resolution and is less grainy compared to CWD. 

C.  Sinusoidal signal combine with Up-Lfm 

This signal contains a sinusoidal signal combined with a 

chirp signal. The transforms are shown in Fig. 7. 

The CWD and BJD provide a nearly perfectly resolved target 

signal in time and frequency. For CWD, the output is smeared, 

whereas ZAMD provides less cross-term interference, but poor 

resolution. WVD has significant cross-term interference.  

D.  Two-Tonal Signals 
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The final signal consists of two overlapping sinusoidal 

signals; overlapping in time. Both sinusoidal signals are having 

different frequencies. From Fig. 8 it is clear that as the noise 

margin increases, WVD becomes totally invisible and the signal 

is difficult to identify. Even though CWD provides better 

resolution, it contains more cross terms than BJD and ZAMD. 

The noisy background in ZAMD makes it slightly difficult to 

identify the signal. BJD is comparatively better than others 

.

Fig.  4 Different Time-Frequency Distributions for multiple LFM with NL=0.5 

 

Fig.  5 Different Time-Frequency Distributions of multiple LFM with NL=1.2 
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Fig.  6 Different Time-Frequency Distributions of two up LFM with NL=1.2 

Fig.  7 Different Time-Frequency Distributions of a Sine combined with a chirp for NL=1.2 

 

Fig.  8 Different Time-frequency Distributions for a two-tonal signal for NL=1.2 
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IV. CONCLUSION 

In this paper, we have tried to compare the Cohen's class 

TFDs for a set of multi-component signals and we have found 

that, even though WVD provides better resolution, as the noise 

margin increases, the cross-terms of WVD makes the signal 

impossible to be identified, whereas its variants like CWD, 

ZAMD and BJD reduces the cross-components   to a 

minimum.  
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